

 [image: CyVerse_logo] [http://learning.cyverse.org/]

[image: Home_Icon] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Introduction

Various types of molecular interactions are principal determinants of the system-scale behaviour of the cell. These interactions include protein–protein interaction, metabolic, signaling and transcription-regulatory networks. Recent innovations and continuing falling costs of technologies have enabled researchers to catalogue the component molecules of these networks not only at a genome-wide scale but also under a large number of different experimental conditions (e.g. time points, cell types, stimuli and treatments). In this tutorial, we will use Discovery Environment apps to analyze a sample dataset of five transcription factors that control the rate of ~14k genes.

Some experience with python programming and command-line is required to follow this tutorial. Download code and sample data for this tutorial from the github repo [https://github.com/enggiqbal/Webinar-NetworkAnalysis.git].

Learning Objectives

	Intro to network analysis and visualization

	Why networks are difficult to visualize and understand

	Powerful combination of tools and techniques to do network analysis

	How to manipulate, slice, and dice networks in order to analyze large networks

	Using CyVerse Discovery Environment apps to do network analysis and visualization

Tutorial Maintainer(s)

Who to contact if this guide needs fixing. You can also email
learning@CyVerse.org

	Maintainer

	Institution

	Contact

	Iqbal Hossain

	CyVerse / UA

	hossain@arizona.edu

	Reetu Tuteja

	CyVerse / UA

	reetututeja@cyverse.org

	Intro to DOT language

	Prepare your data

	Run sfdp

	Node attribute manipulation

	Edge attribute manipulation

	Perform network analysis using Discovery Environment VICE app

Prerequisites

Downloads, access, and services

In order to complete this tutorial you will need access to the following services/software

	Prerequisite

	Preparation/Notes

	Link/Download

	CyVerse account

	You will need a CyVerse account to complete this exercise

	CyVerse User Portal

	Cyberduck

	Standalone software for upload/download to Data Store

	Download Cyberduck

Platform(s)

We will use the following CyVerse platform(s):

	Platform

	Interface

	Link

	Platform Tour

	Data Store

	GUI/Command line

	Data Store

	Data Store Guide

	Discovery Environment

	Web/Point-and-click

	Discovery Environment

	Discovery Environment Guide

Application(s) used

Discovery Environment App(s):

	App name

	Version

	Description

	App link

	Notes/other links

	Jupyterlab-GraphViz

	1.0

	JupyterLab with Graphviz package

	

 Intro to DOT language

 [image: CyVerse_logo] [http://learning.cyverse.org/]

[image: Home_Icon] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Intro to DOT language

DOT is the graph description language. DOT describes three main kinds of objects: graphs (or network), nodes, and edges. Nodes represent units in the network, while edges represent the connections between the nodes of the network. The node of a biological network can represent genes, proteins, mRNAs, protein/protein complexes or cellular processes. DOT graphs are typically files with the filename extension gv or dot.

DOT can be used to describe both undirected (edges with no orientations) and directed (edges with orientations) graphs. Protein–protein and genetic interactions are usually represented with an undirected network, whereas transcription factor binding, phosphorylation, and metabolic networks have directionality built into their interactions.

A DOT file for an undirected graph begins with the keyword graph followed by the name of the graph. An undirected edge between two nodes is specified using two dashes (–). Below is an example DOT file for a simple undirected graph.

graph graphname {
 1 -- 2;
 3 -- 2;
 4 -- 1;
 2 -- 5;
 5 -- 4;
}

[image: _images/undirected_network.png]
A directed graph begins with the keyword digraph followed by the name of the graph. A directed edge between two nodes is specified using a dash and arrow (->). Below is an example DOT file for a simple directed graph.

digraph graphname {
 a -> b;
 a -> c;
 c -> d;
 c -> e;
}

[image: _images/directed_network.png]
Please check more examples DOT files here [https://graphs.grevian.org/example]

Prepare your data

The example data for this tutorial is downloaded from the ConnecTF database [https://connectf.org/] that contains transcription factor (TF)-target interactions for ~ 616 TFs from three different plant species (Arabidopsis, maize and rice). The example input file is in json format, containing interactions for 5 Arabidopsis TFs (14K nodes and 23K edges). Other common interactions file formats for network visualization tools are Simple interaction file (.sif), Graph Markup Language (.gml) and Nested Network Format (.nnf).

Input Data:

	Input

	Description

	Location

	query.cyjs

	Example interactions input file in cytoscape json format

	iplantcollaborative > example_data > Network_analysis_webinar

Here is a sample snippet to convert interactions file in json format to dot using NetworkX Python package:

import networkx as nx
import os, json
from networkx.drawing.nx_agraph import write_dot

json_file = open('query.cyjs')
data = json.load(json_file)

G = nx.Graph()
for n in data['elements']['nodes']:
 ntype = n['data']["type"]
 if n['data']["type"] == "": ntype = "None"
 G.add_node(n['data']["id"], type=ntype, label=n['data']["name"])

for n in data['elements']['edges']:
 G.add_edge(n['data']["source"], n['data']["target"])

print(nx.info(G))
out_file_name="network.dot"
write_dot(G, out_file_name)

Run sfdp

Scalable Force Directed Placement (sfdp) algorithm is part of Graphviz software. It’s a fast multilevel force directed algorithm that efficiently layout very large graphs in a reasonably short time. Check more about sfdp and Graphviz here [https://graphviz.org/pdf/dot.1.pdf].

Here is the sfdp command to create layout for dot file generated in the previous step:

sfdp -Goverlap=prism -Nshape=point -Goutputorder=edgesfirst -Tsvg network.dot -O

[image: _images/network.dot.svg]

Node attribute manipulation

NetworkX library allows to attach attributes such as weight, labels, color to networks, nodes or edges. Attributes are provided in key/value pairs. Check more about adding attributes using NetworkX here [https://networkx.org/documentation/stable/tutorial.html#adding-attributes-to-graphs-nodes-and-edges].

Here is a snippet adding node colors to network generated in previous step:

import networkx as nx
import os
from networkx.drawing.nx_agraph import write_dot
import pygraphviz as pgv

G=nx.Graph(pgv.AGraph("network.dot"))

color={"METABOLIC":"red", "OTHER_RNA":"green","TXNFACTOR":"blue","PRE_TRNA":"yellow"}
#Set color on node based on node type
for n in G.nodes():
 if G.nodes[n]['type'] in color:
 G.nodes[n]['color']=color[G.nodes[n]['type']]
 else:
 G.nodes[n]['color']='black'

out_file_name="network3.dot"
write_dot(G, out_file_name)
os.system("sfdp -Goverlap=prism -Nshape=point -Goutputorder=edgesfirst -Tsvg "+out_file_name+" -O")

[image: _images/network3.dot.svg]

Edge attribute manipulation

Here is an example to manipulate edge attributes:

import networkx as nx
from networkx.drawing.nx_agraph import write_dot
import pygraphviz as pgv
import os

G=nx.Graph(pgv.AGraph("network.dot"))

color={"METABOLIC":"red", "OTHER_RNA":"green","TXNFACTOR":"blue","PRE_TRNA":"yellow"}

for n in G.nodes():
 if G.nodes[n]['type'] in color:
 G.nodes[n]['color']=color[G.nodes[n]['type']]
 else:
 G.nodes[n]['color']='black'
 G.nodes[n]['width']=min(G.degree(n)/15, 1.5)
#set edge color same as node if the both terminal same type
for e in G.edges():
 if G.nodes[e[0]]['type'] == G.nodes[e[1]]['type']:
 G.edges[e]['color']=G.nodes[e[0]]['color']

out_file_name="network5.dot"
write_dot(G, out_file_name)
os.system("sfdp -Goverlap=prism -Nshape=point -Goutputorder=edgesfirst -Tsvg "+out_file_name+" -O")

[image: _images/network5.dot.svg]

Fix or improve this documentation

	Search for an answer:
CyVerse Learning Center

	Ask us for help:
click [image: Intercom] on the lower right-hand side of the page

	Report an issue or submit a change:
Github Repo Link

	Send feedback: learning@CyVerse.org

[image: Home_Icon] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

 Perform network analysis using Discovery Environment VICE app

 [image: CyVerse_logo] [http://learning.cyverse.org/]

[image: Home_Icon] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Perform network analysis using Discovery Environment VICE app

1. Launch the Jupyter Lab Graphviz app

After you login to DE [https://de2.cyverse.org/], open the Apps window and search for Jupyter Lab with key word Jupyterlab-GraphViz or launch the app with webinar example scripts and data [image: graphviz_app] [https://de.cyverse.org/de/?type=quick-launch&quick-launch-id=fd9b32a3-434f-4b96-939e-1dabaa69ffba&app-id=ccb0264c-6c8e-11eb-94c7-008cfa5ae621target="_blank"]

2. Navigate to the JupyterLab url

Unlike regular DE apps once the analysis starts running you will get an url. Click on your notifications, and then by clicking on the “Access your running Analysis here” url. You will be automatically redirected to the app after it finishes the setting phase.

 Index

Index

 License for CyVerse Documentation

License for CyVerse Documentation

Documentation contained in this repo is made available under at CC BY 4.0 License: https://creativecommons.org/licenses/by/4.0/legalcode

You may:

	Share—copy and redistribute the material in any medium or format

	Adapt—remix, transform, and build upon the material

for any purpose, even commercially. The licensor cannot revoke these freedoms as long as you follow these license terms:

Attribution— You must give appropriate credit (mentioning that your work is derived from work that is Copyright (c) CyVerse and, where practical, linking to http://www.cyverse.org/), provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.

No additional restrictions—You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. With the understanding that:

	You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.

	No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material.

This license is superseded by and subject to any and all other polices of CyVerse as described at: http://www.cyverse.org/policies; CyVerse is based upon work supported by the National Science Foundation under Grant No. DBI-0735191 and DBI-1265383.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

 <no title>

 STYLE TIPS - DELETE THIS PAGE BEFORE PUBLISHING

 [image: CyVerse_logo] [http://learning.cyverse.org/]

[image: Home_Icon] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

STYLE TIPS - DELETE THIS PAGE BEFORE PUBLISHING

Tip

Check the code (.rst) source to see how these examples are written
in restructured text.

Many of the examples Writing your documentation using sample data

Where possible, you want write documentation instructions to be general enough
for users can follow along with their own data. To help do this, you can use
the sample data admonition to intersperse sample data-specific instructions
into your generic instructions.

To do this, start your documentation with a description and where possible,
a citation of the data:

Sample data

How to use provided sample data

In this guide, we will use an RNA-Seq dataset (“Zika infected hNPCs”).
This experiment compared human neuroprogenetor cells (hNPCs)
infected with the Zika virus to non-infected hNPCs. You can read more
about the experimental conditions and methods
here [https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0175744].
Where appropriate, a note (in this orange colored background) in the
instructions will indicate which options to select to make use of this
provided dataset.

Sample data citation: Yi L, Pimentel H, Pachter L (2017) Zika
infection of neural progenitor cells perturbs transcription in
neurodevelopmental pathways. PLOS ONE 12(4):
e0175744. 10.1371/journal.pone.0175744 [https://doi.org/10.1371/journal.pone.0175744]

Then, as you have instructions, intersperse the sample data .. admonition

	First, enter the cutoff value for your dataset

Sample data

“Zika infected hNPCs” dataset:

Enter 30

	Continue with next step…

Using in-line questions with tips

Sometimes you may want to ask in-line questions.

Question

How do you get to Carnegie Hall?

Answer

Practice, practice, practice

You can hide long sections of text…

Expand to read more

Open a connection to a public folder

	Open CyberDuck

	If the browser is not already open, select File - New Browser

	
	Create a new connection by clicking on the + in the lower right

	(next to the pencil and minus sign)

	In the top dropdown menu, select iPlant Data Store

	
	In the dialog box, name your connection something relevant, like the name

	of the folder you want to browse to

	
	Enter your user name in the appropriate field. If you are connecting to

	public folder, you can also enter anonymous in this field

	In the Path field, enter /iplant/home/shared, or some subdirectory.

	
	Close the dialog window. Now, in your list of connections, you should see

	
	a new connection with the name you chose. Click on that, and you should go

	directly to the public folder.

Other admonitions

There are several admonitions you can use, but tip and warning are the most
common for our documentation.

learning-objectives

	Objective 1

	Objective 2

	Objective 3

Tip

If you don’t see a desired species/genome contact us [https://dnasubway.cyverse.org/feedback.html] to have it added

Warning

When naming your samples and conditions, avoid spaces and special characters
(e.g. !#$%^&/, etc.). Also be sure to be consistent with spelling.

Buttons and keyboard combinations

Where it adds clarity you can use this text to add buttons:

	Click Cancel to continue

	Press Control + P to print your result

	Fix the [image: CyVerse_launch] [https://de.cyverse.org/de/target="_blank"] link in custom_url.txt to use this button
to launch a quicklaunch link in the DE (the embed HTML the DE generates may
not render properly in RTD)

URLs/Links

Have hyperlinks open in a new tab to avoid pushing the reader off the documentation
page. Always use substitutions. Best practice is to define your substitutions in
the cyverse_rst_defined_substitutions.txt file in this repo for easy future
updating.

Bad link …

bad google [https://www.google.com/]

Good link …

Google

Even better link (because it is defined in a separate file)

CyVerse User Portal

Images

Images should only be used when necessary.

Choose an image size that works for your page:

[image: Too big kitten]

Better size:

[image: Right-size kitten]

Images should have a 1px black border:

[image: Right-size kitten w border]

 Section Name

 |CyVerse logo|_

[image: Home_Icon] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

Section Name

Description:

Input Data:

	Input

	Description

	Example

	
	
	

Descriptive Steps

	Replace the text below with your own

	Use the image src in this link to link to

	A DE App: [image: CyVerse_launch] [https://de.cyverse.org/de/target="_blank"]

	An Atmosphere image: [image: CyVerse_launch] [https://de.cyverse.org/de/target="_blank"]

	Click Cancel to continue is how you can show a button

	Tell the user to choose an appropriate value for a setting

sample-data

Tell them if they are following with our sample data exactly
what value to choose

Output/Results

	Output

	Description

	Example

	
	
	

Summary

Additional information, help

Search for an answer:
CyVerse Learning Center or
CyVerse Wiki

Fix or improve this documentation

	Search for an answer:
CyVerse Learning Center

	Ask us for help:
click [image: Intercom] on the lower right-hand side of the page

	Report an issue or submit a change:
Github Repo Link

	Send feedback: learning@CyVerse.org

[image: Home_Icon] [http://learning.cyverse.org/]
Learning Center Home [http://learning.cyverse.org/]

 1. Check on file versions (all files below should have a version comment in the first line of the file)

name: Triage for Release
about: Describe this issue template’s purpose here.
title: Triage for [Project Title] Release [X.X.X]
labels: 2.0 Release
assignees: ‘’

This is a checklist issue. As we review each repo we should check the following
items.

1. Check on file versions (all files below should have a version comment in the first line of the file)

	[] misc/static/cyverse.css is version 2.0

	[] misc/static/cyverse.js is version 2.0

	[] misc/static/detail-expand.css is version 2.0

	[] misc/static/intercom-script-for-learning.js is version 2.0

	[] misc/static/question-answer.js is version 2.0

	[] misc/static/jquery.min.js is version 2.0

	[] misc/cyverse_spinx_conf.py is version 2.0

	[] conf.py is version 2.0

	[] cyverse_rst_defined_substitutions.txt is version 2.0

	[] README.md is version 2.0

2. Check on the following required formatting for all pages

	[] All .rst pages begin with the following

.. include:: cyverse_rst_defined_substitutions.txt
.. include:: custom_urls.txt

 |CyVerse_logo|_

|Home_Icon|_
`Learning Center Home <http://learning.cyverse.org/>`_

	[] Documentation contains maintainer info on index.rst or the appropriate
first page

Manual Maintainer(s)

Who to contact if this manual needs fixing. You can also email
`Tutorials@CyVerse.org <Tutorials@CyVerse.org>`_

.. list-table::
 :header-rows: 1

 * - Maintainer
 - Institution
 - Contact
 * - Your Name
 - CyVerse / UA
 - Yourname@email.com

	[] Documentation contains the fix/improve instructions on all .rst pages

Fix or improve this documentation

- Search for an answer:
 |CyVerse Learning Center|
- Ask us for help:
 click |Intercom| on the lower right-hand side of the page
- Report an issue or submit a change:
 |Github Repo Link|
- Send feedback: `Tutorials@CyVerse.org <Tutorials@CyVerse.org>`_

	[] All hyperlinks in documentation are on the repo’s custom_urls.txt or cyverse_rst_defined_substitutions.txt
Note: We want to avoid:

	Best practice is to AVOID inline hyperlinks

	Where possible links should NOT be on the .rst page but on a single
document that is included. (e.g. custom_urls.txt or cyverse_rst_defined_substitutions.txt)

	Links should have the form below and open in a new tab:

 .. |Link Title| raw:: html

 Link Title

3. Overall quality

	[] Maintainer is assigned and has approved the content

	[] Editor has checked for quality (spelling, formatting, etc.)

	[] Sample/test data is available with anonymous/public read access
in the appropriate directory at /iplant/home/shared/cyverse_training

 <no title>

 Copyright 2007 Pallets

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 <no title>

 Copyright 2010 Pallets

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 What is Alabaster?

What is Alabaster?

Alabaster is a visually (c)lean, responsive, configurable theme for the Sphinx [http://sphinx-doc.org] documentation system. It is Python 2+3 compatible.

It began as a third-party theme, and is still maintained separately, but as of
Sphinx 1.3, Alabaster is an install-time dependency of Sphinx and is selected
as the default theme.

Live examples of this theme can be seen on this project’s own website [http://alabaster.readthedocs.io], paramiko.org [http://paramiko.org],
fabfile.org [http://fabfile.org] and pyinvoke.org [http://pyinvoke.org].

For more documentation, please see http://alabaster.readthedocs.io.

Note

You can install the development version via pip install -e
git+https://github.com/bitprophet/alabaster/#egg=alabaster.

 Source Serif Pro

Source Serif Pro

Source Serif Pro is a set of OpenType fonts to complement the Source Sans Pro [https://github.com/adobe-fonts/source-sans-pro] family.
In addition to a functional OpenType font, this open source project provides all of the source files that were used to build this OpenType font by using the AFDKO makeotf tool.

Installation instructions

	Mac OS X [http://support.apple.com/kb/HT2509]

	Windows [http://windows.microsoft.com/en-us/windows-vista/install-or-uninstall-fonts]

	Linux/Unix-based systems [https://github.com/adobe-fonts/source-code-pro/issues/17#issuecomment-8967116]

Getting Involved

Send suggestions for changes to the Source Serif OpenType font project maintainer, [Frank Grießhammer](mailto:opensourcefonts@adobe.com?subject=[GitHub] Source Serif Pro), for consideration.

Further information

For information about the design and background of Source Serif, please refer to the official font readme file [http://htmlpreview.github.io/?https://github.com/adobe-fonts/source-serif-pro/blob/master/SourceSerifProReadMe.html].

 License

License

License: bsd-3-clause

Copyright (c) 2013-2020, Kim Davies. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided with
the distribution.

	Neither the name of the copyright holder nor the names of the
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.

	THIS SOFTWARE IS PROVIDED BY THE CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

 The MIT License (MIT)

The MIT License (MIT)

Copyright © 2016 Yoshiki Shibukawa

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the “Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH
THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 pytz - World Timezone Definitions for Python

pytz - World Timezone Definitions for Python

	Author

	Stuart Bishop <stuart@stuartbishop.net>

Introduction

pytz brings the Olson tz database into Python. This library allows
accurate and cross platform timezone calculations using Python 2.4
or higher. It also solves the issue of ambiguous times at the end
of daylight saving time, which you can read more about in the Python
Library Reference (datetime.tzinfo).

Almost all of the Olson timezones are supported.

Note

This library differs from the documented Python API for
tzinfo implementations; if you want to create local wallclock
times you need to use the localize() method documented in this
document. In addition, if you perform date arithmetic on local
times that cross DST boundaries, the result may be in an incorrect
timezone (ie. subtract 1 minute from 2002-10-27 1:00 EST and you get
2002-10-27 0:59 EST instead of the correct 2002-10-27 1:59 EDT). A
normalize() method is provided to correct this. Unfortunately these
issues cannot be resolved without modifying the Python datetime
implementation (see PEP-431).

Installation

This package can either be installed using pip or from a tarball using the
standard Python distutils.

If you are installing using pip, you don’t need to download anything as the
latest version will be downloaded for you from PyPI:

pip install pytz

If you are installing from a tarball, run the following command as an
administrative user:

python setup.py install

pytz for Enterprise

Available as part of the Tidelift Subscription.

The maintainers of pytz and thousands of other packages are working with Tidelift to deliver commercial support and maintenance for the open source dependencies you use to build your applications. Save time, reduce risk, and improve code health, while paying the maintainers of the exact dependencies you use. Learn more. [https://tidelift.com/subscription/pkg/pypi-pytz?utm_source=pypi-pytz&utm_medium=referral&utm_campaign=enterprise&utm_term=repo].

Example & Usage

Localized times and date arithmetic

>>> from datetime import datetime, timedelta
>>> from pytz import timezone
>>> import pytz
>>> utc = pytz.utc
>>> utc.zone
'UTC'
>>> eastern = timezone('US/Eastern')
>>> eastern.zone
'US/Eastern'
>>> amsterdam = timezone('Europe/Amsterdam')
>>> fmt = '%Y-%m-%d %H:%M:%S %Z%z'

This library only supports two ways of building a localized time. The
first is to use the localize() method provided by the pytz library.
This is used to localize a naive datetime (datetime with no timezone
information):

>>> loc_dt = eastern.localize(datetime(2002, 10, 27, 6, 0, 0))
>>> print(loc_dt.strftime(fmt))
2002-10-27 06:00:00 EST-0500

The second way of building a localized time is by converting an existing
localized time using the standard astimezone() method:

>>> ams_dt = loc_dt.astimezone(amsterdam)
>>> ams_dt.strftime(fmt)
'2002-10-27 12:00:00 CET+0100'

Unfortunately using the tzinfo argument of the standard datetime
constructors ‘’does not work’’ with pytz for many timezones.

>>> datetime(2002, 10, 27, 12, 0, 0, tzinfo=amsterdam).strftime(fmt) # /!\ Does not work this way!
'2002-10-27 12:00:00 LMT+0020'

It is safe for timezones without daylight saving transitions though, such
as UTC:

>>> datetime(2002, 10, 27, 12, 0, 0, tzinfo=pytz.utc).strftime(fmt) # /!\ Not recommended except for UTC
'2002-10-27 12:00:00 UTC+0000'

The preferred way of dealing with times is to always work in UTC,
converting to localtime only when generating output to be read
by humans.

>>> utc_dt = datetime(2002, 10, 27, 6, 0, 0, tzinfo=utc)
>>> loc_dt = utc_dt.astimezone(eastern)
>>> loc_dt.strftime(fmt)
'2002-10-27 01:00:00 EST-0500'

This library also allows you to do date arithmetic using local
times, although it is more complicated than working in UTC as you
need to use the normalize() method to handle daylight saving time
and other timezone transitions. In this example, loc_dt is set
to the instant when daylight saving time ends in the US/Eastern
timezone.

>>> before = loc_dt - timedelta(minutes=10)
>>> before.strftime(fmt)
'2002-10-27 00:50:00 EST-0500'
>>> eastern.normalize(before).strftime(fmt)
'2002-10-27 01:50:00 EDT-0400'
>>> after = eastern.normalize(before + timedelta(minutes=20))
>>> after.strftime(fmt)
'2002-10-27 01:10:00 EST-0500'

Creating local times is also tricky, and the reason why working with
local times is not recommended. Unfortunately, you cannot just pass
a tzinfo argument when constructing a datetime (see the next
section for more details)

>>> dt = datetime(2002, 10, 27, 1, 30, 0)
>>> dt1 = eastern.localize(dt, is_dst=True)
>>> dt1.strftime(fmt)
'2002-10-27 01:30:00 EDT-0400'
>>> dt2 = eastern.localize(dt, is_dst=False)
>>> dt2.strftime(fmt)
'2002-10-27 01:30:00 EST-0500'

Converting between timezones is more easily done, using the
standard astimezone method.

>>> utc_dt = utc.localize(datetime.utcfromtimestamp(1143408899))
>>> utc_dt.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'
>>> au_tz = timezone('Australia/Sydney')
>>> au_dt = utc_dt.astimezone(au_tz)
>>> au_dt.strftime(fmt)
'2006-03-27 08:34:59 AEDT+1100'
>>> utc_dt2 = au_dt.astimezone(utc)
>>> utc_dt2.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'
>>> utc_dt == utc_dt2
True

You can take shortcuts when dealing with the UTC side of timezone
conversions. normalize() and localize() are not really
necessary when there are no daylight saving time transitions to
deal with.

>>> utc_dt = datetime.utcfromtimestamp(1143408899).replace(tzinfo=utc)
>>> utc_dt.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'
>>> au_tz = timezone('Australia/Sydney')
>>> au_dt = au_tz.normalize(utc_dt.astimezone(au_tz))
>>> au_dt.strftime(fmt)
'2006-03-27 08:34:59 AEDT+1100'
>>> utc_dt2 = au_dt.astimezone(utc)
>>> utc_dt2.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'

tzinfo API

The tzinfo instances returned by the timezone() function have
been extended to cope with ambiguous times by adding an is_dst
parameter to the utcoffset(), dst() && tzname() methods.

>>> tz = timezone('America/St_Johns')

>>> normal = datetime(2009, 9, 1)
>>> ambiguous = datetime(2009, 10, 31, 23, 30)

The is_dst parameter is ignored for most timestamps. It is only used
during DST transition ambiguous periods to resolve that ambiguity.

>>> print(tz.utcoffset(normal, is_dst=True))
-1 day, 21:30:00
>>> print(tz.dst(normal, is_dst=True))
1:00:00
>>> tz.tzname(normal, is_dst=True)
'NDT'

>>> print(tz.utcoffset(ambiguous, is_dst=True))
-1 day, 21:30:00
>>> print(tz.dst(ambiguous, is_dst=True))
1:00:00
>>> tz.tzname(ambiguous, is_dst=True)
'NDT'

>>> print(tz.utcoffset(normal, is_dst=False))
-1 day, 21:30:00
>>> tz.dst(normal, is_dst=False)
datetime.timedelta(0, 3600)
>>> tz.tzname(normal, is_dst=False)
'NDT'

>>> print(tz.utcoffset(ambiguous, is_dst=False))
-1 day, 20:30:00
>>> tz.dst(ambiguous, is_dst=False)
datetime.timedelta(0)
>>> tz.tzname(ambiguous, is_dst=False)
'NST'

If is_dst is not specified, ambiguous timestamps will raise
an pytz.exceptions.AmbiguousTimeError exception.

>>> print(tz.utcoffset(normal))
-1 day, 21:30:00
>>> print(tz.dst(normal))
1:00:00
>>> tz.tzname(normal)
'NDT'

>>> import pytz.exceptions
>>> try:
... tz.utcoffset(ambiguous)
... except pytz.exceptions.AmbiguousTimeError:
... print('pytz.exceptions.AmbiguousTimeError: %s' % ambiguous)
pytz.exceptions.AmbiguousTimeError: 2009-10-31 23:30:00
>>> try:
... tz.dst(ambiguous)
... except pytz.exceptions.AmbiguousTimeError:
... print('pytz.exceptions.AmbiguousTimeError: %s' % ambiguous)
pytz.exceptions.AmbiguousTimeError: 2009-10-31 23:30:00
>>> try:
... tz.tzname(ambiguous)
... except pytz.exceptions.AmbiguousTimeError:
... print('pytz.exceptions.AmbiguousTimeError: %s' % ambiguous)
pytz.exceptions.AmbiguousTimeError: 2009-10-31 23:30:00

Problems with Localtime

The major problem we have to deal with is that certain datetimes
may occur twice in a year. For example, in the US/Eastern timezone
on the last Sunday morning in October, the following sequence
happens:

	01:00 EDT occurs

	1 hour later, instead of 2:00am the clock is turned back 1 hour
and 01:00 happens again (this time 01:00 EST)

In fact, every instant between 01:00 and 02:00 occurs twice. This means
that if you try and create a time in the ‘US/Eastern’ timezone
the standard datetime syntax, there is no way to specify if you meant
before of after the end-of-daylight-saving-time transition. Using the
pytz custom syntax, the best you can do is make an educated guess:

>>> loc_dt = eastern.localize(datetime(2002, 10, 27, 1, 30, 00))
>>> loc_dt.strftime(fmt)
'2002-10-27 01:30:00 EST-0500'

As you can see, the system has chosen one for you and there is a 50%
chance of it being out by one hour. For some applications, this does
not matter. However, if you are trying to schedule meetings with people
in different timezones or analyze log files it is not acceptable.

The best and simplest solution is to stick with using UTC. The pytz
package encourages using UTC for internal timezone representation by
including a special UTC implementation based on the standard Python
reference implementation in the Python documentation.

The UTC timezone unpickles to be the same instance, and pickles to a
smaller size than other pytz tzinfo instances. The UTC implementation
can be obtained as pytz.utc, pytz.UTC, or pytz.timezone(‘UTC’).

>>> import pickle, pytz
>>> dt = datetime(2005, 3, 1, 14, 13, 21, tzinfo=utc)
>>> naive = dt.replace(tzinfo=None)
>>> p = pickle.dumps(dt, 1)
>>> naive_p = pickle.dumps(naive, 1)
>>> len(p) - len(naive_p)
17
>>> new = pickle.loads(p)
>>> new == dt
True
>>> new is dt
False
>>> new.tzinfo is dt.tzinfo
True
>>> pytz.utc is pytz.UTC is pytz.timezone('UTC')
True

Note that some other timezones are commonly thought of as the same (GMT,
Greenwich, Universal, etc.). The definition of UTC is distinct from these
other timezones, and they are not equivalent. For this reason, they will
not compare the same in Python.

>>> utc == pytz.timezone('GMT')
False

See the section What is UTC, below.

If you insist on working with local times, this library provides a
facility for constructing them unambiguously:

>>> loc_dt = datetime(2002, 10, 27, 1, 30, 00)
>>> est_dt = eastern.localize(loc_dt, is_dst=True)
>>> edt_dt = eastern.localize(loc_dt, is_dst=False)
>>> print(est_dt.strftime(fmt) + ' / ' + edt_dt.strftime(fmt))
2002-10-27 01:30:00 EDT-0400 / 2002-10-27 01:30:00 EST-0500

If you pass None as the is_dst flag to localize(), pytz will refuse to
guess and raise exceptions if you try to build ambiguous or non-existent
times.

For example, 1:30am on 27th Oct 2002 happened twice in the US/Eastern
timezone when the clocks where put back at the end of Daylight Saving
Time:

>>> dt = datetime(2002, 10, 27, 1, 30, 00)
>>> try:
... eastern.localize(dt, is_dst=None)
... except pytz.exceptions.AmbiguousTimeError:
... print('pytz.exceptions.AmbiguousTimeError: %s' % dt)
pytz.exceptions.AmbiguousTimeError: 2002-10-27 01:30:00

Similarly, 2:30am on 7th April 2002 never happened at all in the
US/Eastern timezone, as the clocks where put forward at 2:00am skipping
the entire hour:

>>> dt = datetime(2002, 4, 7, 2, 30, 00)
>>> try:
... eastern.localize(dt, is_dst=None)
... except pytz.exceptions.NonExistentTimeError:
... print('pytz.exceptions.NonExistentTimeError: %s' % dt)
pytz.exceptions.NonExistentTimeError: 2002-04-07 02:30:00

Both of these exceptions share a common base class to make error handling
easier:

>>> isinstance(pytz.AmbiguousTimeError(), pytz.InvalidTimeError)
True
>>> isinstance(pytz.NonExistentTimeError(), pytz.InvalidTimeError)
True

A special case is where countries change their timezone definitions
with no daylight savings time switch. For example, in 1915 Warsaw
switched from Warsaw time to Central European time with no daylight savings
transition. So at the stroke of midnight on August 5th 1915 the clocks
were wound back 24 minutes creating an ambiguous time period that cannot
be specified without referring to the timezone abbreviation or the
actual UTC offset. In this case midnight happened twice, neither time
during a daylight saving time period. pytz handles this transition by
treating the ambiguous period before the switch as daylight savings
time, and the ambiguous period after as standard time.

>>> warsaw = pytz.timezone('Europe/Warsaw')
>>> amb_dt1 = warsaw.localize(datetime(1915, 8, 4, 23, 59, 59), is_dst=True)
>>> amb_dt1.strftime(fmt)
'1915-08-04 23:59:59 WMT+0124'
>>> amb_dt2 = warsaw.localize(datetime(1915, 8, 4, 23, 59, 59), is_dst=False)
>>> amb_dt2.strftime(fmt)
'1915-08-04 23:59:59 CET+0100'
>>> switch_dt = warsaw.localize(datetime(1915, 8, 5, 00, 00, 00), is_dst=False)
>>> switch_dt.strftime(fmt)
'1915-08-05 00:00:00 CET+0100'
>>> str(switch_dt - amb_dt1)
'0:24:01'
>>> str(switch_dt - amb_dt2)
'0:00:01'

The best way of creating a time during an ambiguous time period is
by converting from another timezone such as UTC:

>>> utc_dt = datetime(1915, 8, 4, 22, 36, tzinfo=pytz.utc)
>>> utc_dt.astimezone(warsaw).strftime(fmt)
'1915-08-04 23:36:00 CET+0100'

The standard Python way of handling all these ambiguities is not to
handle them, such as demonstrated in this example using the US/Eastern
timezone definition from the Python documentation (Note that this
implementation only works for dates between 1987 and 2006 - it is
included for tests only!):

>>> from pytz.reference import Eastern # pytz.reference only for tests
>>> dt = datetime(2002, 10, 27, 0, 30, tzinfo=Eastern)
>>> str(dt)
'2002-10-27 00:30:00-04:00'
>>> str(dt + timedelta(hours=1))
'2002-10-27 01:30:00-05:00'
>>> str(dt + timedelta(hours=2))
'2002-10-27 02:30:00-05:00'
>>> str(dt + timedelta(hours=3))
'2002-10-27 03:30:00-05:00'

Notice the first two results? At first glance you might think they are
correct, but taking the UTC offset into account you find that they are
actually two hours appart instead of the 1 hour we asked for.

>>> from pytz.reference import UTC # pytz.reference only for tests
>>> str(dt.astimezone(UTC))
'2002-10-27 04:30:00+00:00'
>>> str((dt + timedelta(hours=1)).astimezone(UTC))
'2002-10-27 06:30:00+00:00'

Country Information

A mechanism is provided to access the timezones commonly in use
for a particular country, looked up using the ISO 3166 country code.
It returns a list of strings that can be used to retrieve the relevant
tzinfo instance using pytz.timezone():

>>> print(' '.join(pytz.country_timezones['nz']))
Pacific/Auckland Pacific/Chatham

The Olson database comes with a ISO 3166 country code to English country
name mapping that pytz exposes as a dictionary:

>>> print(pytz.country_names['nz'])
New Zealand

What is UTC

‘UTC’ is Coordinated Universal Time [https://en.wikipedia.org/wiki/Coordinated_Universal_Time]. It is a successor to, but distinct
from, Greenwich Mean Time (GMT) and the various definitions of Universal
Time. UTC is now the worldwide standard for regulating clocks and time
measurement.

All other timezones are defined relative to UTC, and include offsets like
UTC+0800 - hours to add or subtract from UTC to derive the local time. No
daylight saving time occurs in UTC, making it a useful timezone to perform
date arithmetic without worrying about the confusion and ambiguities caused
by daylight saving time transitions, your country changing its timezone, or
mobile computers that roam through multiple timezones.

Helpers

There are two lists of timezones provided.

all_timezones is the exhaustive list of the timezone names that can
be used.

>>> from pytz import all_timezones
>>> len(all_timezones) >= 500
True
>>> 'Etc/Greenwich' in all_timezones
True

common_timezones is a list of useful, current timezones. It doesn’t
contain deprecated zones or historical zones, except for a few I’ve
deemed in common usage, such as US/Eastern (open a bug report if you
think other timezones are deserving of being included here). It is also
a sequence of strings.

>>> from pytz import common_timezones
>>> len(common_timezones) < len(all_timezones)
True
>>> 'Etc/Greenwich' in common_timezones
False
>>> 'Australia/Melbourne' in common_timezones
True
>>> 'US/Eastern' in common_timezones
True
>>> 'Canada/Eastern' in common_timezones
True
>>> 'Australia/Yancowinna' in all_timezones
True
>>> 'Australia/Yancowinna' in common_timezones
False

Both common_timezones and all_timezones are alphabetically
sorted:

>>> common_timezones_dupe = common_timezones[:]
>>> common_timezones_dupe.sort()
>>> common_timezones == common_timezones_dupe
True
>>> all_timezones_dupe = all_timezones[:]
>>> all_timezones_dupe.sort()
>>> all_timezones == all_timezones_dupe
True

all_timezones and common_timezones are also available as sets.

>>> from pytz import all_timezones_set, common_timezones_set
>>> 'US/Eastern' in all_timezones_set
True
>>> 'US/Eastern' in common_timezones_set
True
>>> 'Australia/Victoria' in common_timezones_set
False

You can also retrieve lists of timezones used by particular countries
using the country_timezones() function. It requires an ISO-3166
two letter country code.

>>> from pytz import country_timezones
>>> print(' '.join(country_timezones('ch')))
Europe/Zurich
>>> print(' '.join(country_timezones('CH')))
Europe/Zurich

Internationalization - i18n/l10n

Pytz is an interface to the IANA database, which uses ASCII names. The Unicode Consortium’s Unicode Locales (CLDR) [http://cldr.unicode.org]
project provides translations. Thomas Khyn’s
l18n [https://pypi.org/project/l18n/] package can be used to access
these translations from Python.

License

MIT license.

This code is also available as part of Zope 3 under the Zope Public
License, Version 2.1 (ZPL).

I’m happy to relicense this code if necessary for inclusion in other
open source projects.

Latest Versions

This package will be updated after releases of the Olson timezone
database. The latest version can be downloaded from the Python Package
Index [https://pypi.org/project/pytz/]. The code that is used
to generate this distribution is hosted on launchpad.net and available
using git:

git clone https://git.launchpad.net/pytz

A mirror on github is also available at https://github.com/stub42/pytz

Announcements of new releases are made on
Launchpad [https://launchpad.net/pytz], and the
Atom feed [http://feeds.launchpad.net/pytz/announcements.atom]
hosted there.

Bugs, Feature Requests & Patches

Bugs can be reported using Launchpad Bugs [https://bugs.launchpad.net/pytz].

Security Issues

Reports about security issues can be made via Tidelift [https://tidelift.com/security].

Issues & Limitations

	Offsets from UTC are rounded to the nearest whole minute, so timezones
such as Europe/Amsterdam pre 1937 will be up to 30 seconds out. This
is a limitation of the Python datetime library.

	If you think a timezone definition is incorrect, I probably can’t fix
it. pytz is a direct translation of the Olson timezone database, and
changes to the timezone definitions need to be made to this source.
If you find errors they should be reported to the time zone mailing
list, linked from http://www.iana.org/time-zones.

Further Reading

More info than you want to know about timezones:
http://www.twinsun.com/tz/tz-link.htm

Contact

Stuart Bishop <stuart@stuartbishop.net>

 <no title>

 {{ fullname | escape | underline}}

 <no title>

 {{ fullname | escape | underline}}

 <no title>

 {{ fullname | escape | underline}}

 <no title>

 This folder should contain slides releveant to this tutorial or quick start

_images/homeicon.png

_images/intercom.png

_images/cyverse_learning.png
& CYVERSE

LEARNING

_images/directed_network.png

_images/kitten_no_border.png

_images/kitten_w_border.png

_images/undirected_network.png

_images/Powered-By-CyVerse-blue.png
'Q Powered By CyVerse ‘

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Intro to DOT language

 		
 Prepare your data

 		
 Run sfdp

 		
 Node attribute manipulation

 		
 Edge attribute manipulation

 		
 Perform network analysis using Discovery Environment VICE app

_static/bg.gif

_static/comment-bright.png

_static/asc.gif

_static/desc.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_stati